home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Singles Flirt Up Your Life! (German)
/
Singles Flirt Up Your Life.iso
/
data1.cab
/
MeshLow
/
KitchenCounterOldschool.ams
< prev
next >
Wrap
Text File
|
2004-01-29
|
11KB
|
597 lines
Wonderlib::MVFMesh object
{
boneName
{
}
boneWeight
{
}
material
{
Wonderlib::Material 0
{
ambient = 0 0 0 1
bumpmap =
diffuse = 0.8 0.8 0.8 1
dstBlend = 5
name = KitchenCounterTop
power = 80
specular = 0.07438 0.07438 0.07438 0.5
srcBlend = 4
texture = CounterKitchenTop_C
type = 257
uOffset = 0
uRepeat = 1
vOffset = 0
vRepeat = 1
}
Wonderlib::Material 1
{
ambient = 0 0 0 1
bumpmap =
diffuse = 0.8 0.8 0.8 1
dstBlend = 5
name = KitchenCounter
power = 80
specular = 0.07438 0.07438 0.07438 0.5
srcBlend = 4
texture = CounterKitchen_C
type = 257
uOffset = 0
uRepeat = 1
vOffset = 0
vRepeat = 1
}
Wonderlib::Material 2
{
ambient = 0 0 0 1
bumpmap =
diffuse = 0.006468 0.0742585 0.1176 1
dstBlend = 5
name = xportCubardHandle_CubardHandle
power = 144.064
specular = 0.15702 0.15702 0.15702 0.5
srcBlend = 4
texture =
type = 256
uOffset = 0
uRepeat = 1
vOffset = 0
vRepeat = 1
}
}
normalVertex
{
0 = 0 -0.218829 0.975763
1 = 0 -1 0
2 = 0.971741 -0.236051 0
3 = 0 -0.218829 0.975763
4 = 0 -1 0
5 = -0.971741 -0.236051 0
6 = 0 -0.218829 0.975763
7 = 0.971741 -0.236051 0
8 = 0 1 0
9 = 0 -0.218829 0.975763
10 = -0.971741 -0.236051 0
11 = 0 1 0
12 = 0 -0.218832 -0.975763
13 = 0.971741 -0.236051 0
14 = 0 1 0
15 = 0 -0.218832 -0.975763
16 = -0.971741 -0.236051 0
17 = 0 1 0
18 = 0 -0.218832 -0.975763
19 = 0 -1 0
20 = 0.971741 -0.236051 0
21 = 0 -0.218832 -0.975763
22 = 0 -1 0
23 = -0.971741 -0.236051 0
24 = 0 0 -1
25 = 1 0 0
26 = 0 -1 0
27 = 0 1 0
28 = 0 0 -1
29 = 1 0 0
30 = 0 1 0
31 = 0.84381 0.333958 -0.420068
32 = 1 0 0
33 = 0.826409 -0.417842 -0.377435
34 = 1 0 0
35 = 0 -1 0
36 = 0 0 1
37 = 0.393174 0.572192 -0.71973
38 = 0.46989 -0.65505 -0.591704
39 = 0 0 1
40 = -1 0 0
41 = 0 0 -1
42 = 0 -1 0
43 = 0 1 0
44 = -1 0 0
45 = 0 0 -1
46 = -0.84381 0.333958 -0.420068
47 = 0 1 0
48 = -1 0 0
49 = -1 0 0
50 = -1 0 0
51 = 0 -0.742077 -0.670315
52 = 0 -1 0
53 = -0.393174 0.572192 -0.71973
54 = 0 0 1
55 = -1 0 0
56 = 0 -0.742077 -0.670315
57 = 0 0 1
}
positionVertex
{
0 = -0.25 -0.17 0.8
1 = -0.25 0.25 0.8
2 = -0.25 -0.144037 0.771257
3 = -0.25 0.213846 0.771257
4 = -0.25 0.213846 0
5 = -0.25 -0.144037 0
6 = 0.25 -0.17 0.8
7 = 0.25 0.25 0.8
8 = 0.25 -0.144037 0.771257
9 = 0.25 0.213846 0.771257
10 = 0.25 0.213846 0
11 = 0.25 -0.144037 0
12 = -0.00546074 0.21258 0.669835
13 = 0.00546074 0.21258 0.669835
14 = -0.011142 0.235968 0.66459
15 = 0.011142 0.235968 0.66459
16 = -0.011142 0.235968 0.686874
17 = 0.011142 0.235968 0.686874
18 = -0.00546074 0.21258 0.681629
19 = 0.00546074 0.21258 0.681629
}
textureTriangle
{
0
{
0 = 21 22 20
1 = 22 23 20
2 = 7 8 10
3 = 8 9 10
4 = 15 16 1
5 = 16 0 1
6 = 26 24 25
7 = 24 20 25
8 = 21 20 28
9 = 20 24 28
10 = 3 2 6
11 = 2 5 6
12 = 28 31 21
13 = 31 29 21
14 = 28 24 27
15 = 24 30 27
16 = 17 4 19
17 = 4 18 19
18 = 11 12 14
19 = 12 13 14
20 = 35 34 32
21 = 32 34 33
22 = 37 36 38
23 = 36 39 38
24 = 40 43 41
25 = 43 42 41
26 = 47 46 44
27 = 44 46 45
28 = 50 49 51
29 = 48 51 49
30 = 36 46 50
31 = 46 34 50
}
1
{
0 = 1 2 33
1 = 2 36 33
2 = 5 2 14
3 = 2 10 14
4 = 5 6 2
5 = 6 36 2
6 = 16 30 3
7 = 30 0 3
8 = 18 19 39
9 = 19 20 39
10 = 22 23 25
11 = 23 24 25
12 = 21 31 38
13 = 31 4 38
14 = 29 15 10
15 = 15 12 10
16 = 14 10 7
17 = 10 12 7
18 = 37 17 3
19 = 17 16 3
20 = 34 35 28
21 = 28 35 27
22 = 11 26 8
23 = 26 9 8
24 = 32 13 8
25 = 13 27 8
26 = 35 11 27
27 = 27 11 8
28 = 34 28 26
29 = 9 26 28
30 = 26 11 34
31 = 11 35 34
}
}
textureVertex
{
0
{
0 = 0.983213 0.159429
1 = 0.567689 0.159429
2 = 0.978749 0.651576
3 = 0.979463 0.197267
4 = 0.567689 0.10002
5 = 0.579832 0.651576
6 = 0.578512 0.197267
7 = 0.545547 0.957601
8 = 0.544518 0.0844092
9 = 0.0021311 0.0844092
10 = 0.0021311 0.957601
11 = 0.980775 0.91233
12 = 0.569725 0.91233
13 = 0.57108 0.158614
14 = 0.980662 0.158614
15 = 0.567689 0.922711
16 = 0.983213 0.922711
17 = 0.567689 0.863301
18 = 0.983213 0.10002
19 = 0.983213 0.863301
20 = 0.862434 1.04924
21 = 0.860518 1.84911
22 = 0.908174 1.83414
23 = 0.90993 1.04582
24 = 0.0483831 1.04762
25 = 0.866219 1.00718
26 = 0.0448095 1.00557
27 = 0.00044632 1.83234
28 = 0.0464667 1.84748
29 = 0.860379 1.90449
30 = 0.00244737 1.04402
31 = 0.0463282 1.90287
32 = 0.00199203 0.998023
33 = 0.275555 0.998023
34 = 0.275555 0.724461
35 = 0.00199203 0.724461
36 = 0.282836 0.779429
37 = 0.556399 0.779429
38 = 0.556399 0.505867
39 = 0.282836 0.505867
40 = 0.444748 0.501875
41 = 0.71831 0.501875
42 = 0.71831 0.228313
43 = 0.444748 0.228313
44 = 0.563485 0.998023
45 = 0.837048 0.998023
46 = 0.837048 0.724461
47 = 0.563485 0.724461
48 = 0.724445 0.501875
49 = 0.998008 0.501875
50 = 0.998008 0.228313
51 = 0.724445 0.228313
}
1
{
0 = 0.947815 0.95874
1 = 0.576262 0.692756
2 = 0.564365 0.688101
3 = 0.947815 0.942593
4 = 0.641335 0.957553
5 = 0.0465989 0.691952
6 = 0.046599 0.957595
7 = 0.0465991 0.0449035
8 = 0.923946 0.522884
9 = 0.923946 0.542171
10 = 0.564365 0.315603
11 = 0.921584 0.525267
12 = 0.552467 0.0449038
13 = 0.90573 0.505971
14 = 0.046599 0.310546
15 = 0.576262 0.0449038
16 = 0.735004 0.942593
17 = 0.735004 0.599311
18 = 0.658249 0.420964
19 = 0.949698 0.420964
20 = 0.949698 0.0483053
21 = 0.658249 0.604191
22 = 0.810099 0.531619
23 = 0.831457 0.531619
24 = 0.831457 0.501485
25 = 0.810099 0.501485
26 = 0.921576 0.539744
27 = 0.90573 0.522855
28 = 0.90573 0.542144
29 = 0.576262 0.315055
30 = 0.735004 0.95874
31 = 0.641335 0.604191
32 = 0.923946 0.505985
33 = 0.576262 0.957594
34 = 0.907886 0.539742
35 = 0.907894 0.525265
36 = 0.552467 0.957594
37 = 0.947815 0.599311
38 = 0.658249 0.957553
39 = 0.658249 0.0483053
}
}
triangle
{
0
{
materialNr = 0
normalVertexNr = 53 46 55
positionVertexNr = 1 3 0
smoothingGroup = 68
}
1
{
materialNr = 0
normalVertexNr = 46 49 55
positionVertexNr = 3 2 0
smoothingGroup = 4
}
2
{
materialNr = 1
normalVertexNr = 43 47 27
positionVertexNr = 4 3 10
smoothingGroup = 32
}
3
{
materialNr = 1
normalVertexNr = 47 30 27
positionVertexNr = 3 9 10
smoothingGroup = 32
}
4
{
materialNr = 1
normalVertexNr = 44 40 48
positionVertexNr = 4 5 3
smoothingGroup = 2
}
5
{
materialNr = 1
normalVertexNr = 40 50 48
positionVertexNr = 5 2 3
smoothingGroup = 2
}
6
{
materialNr = 0
normalVertexNr = 33 38 51
positionVertexNr = 8 6 2
smoothingGroup = 24
}
7
{
materialNr = 0
normalVertexNr = 38 56 51
positionVertexNr = 6 0 2
smoothingGroup = 8
}
8
{
materialNr = 0
normalVertexNr = 54 57 36
positionVertexNr = 1 0 7
smoothingGroup = 2
}
9
{
materialNr = 0
normalVertexNr = 57 39 36
positionVertexNr = 0 6 7
smoothingGroup = 2
}
10
{
materialNr = 1
normalVertexNr = 41 45 24
positionVertexNr = 5 4 11
smoothingGroup = 4
}
11
{
materialNr = 1
normalVertexNr = 45 28 24
positionVertexNr = 4 10 11
smoothingGroup = 4
}
12
{
materialNr = 0
normalVertexNr = 37 31 53
positionVertexNr = 7 9 1
smoothingGroup = 9
}
13
{
materialNr = 0
normalVertexNr = 31 46 53
positionVertexNr = 9 3 1
smoothingGroup = 72
}
14
{
materialNr = 0
normalVertexNr = 37 38 31
positionVertexNr = 7 6 9
smoothingGroup = 5
}
15
{
materialNr = 0
normalVertexNr = 38 33 31
positionVertexNr = 6 8 9
smoothingGroup = 20
}
16
{
materialNr = 1
normalVertexNr = 29 32 25
positionVertexNr = 10 9 11
smoothingGroup = 2
}
17
{
materialNr = 1
normalVertexNr = 32 34 25
positionVertexNr = 9 8 11
smoothingGroup = 2
}
18
{
materialNr = 1
normalVertexNr = 42 26 52
positionVertexNr = 5 11 2
smoothingGroup = 1
}
19
{
materialNr = 1
normalVertexNr = 26 35 52
positionVertexNr = 11 8 2
smoothingGroup = 1
}
20
{
materialNr = 2
normalVertexNr = 15 12 21
positionVertexNr = 14 15 12
smoothingGroup = 4
}
21
{
materialNr = 2
normalVertexNr = 21 12 18
positionVertexNr = 12 15 13
smoothingGroup = 4
}
22
{
materialNr = 2
normalVertexNr = 6 9 0
positionVertexNr = 17 16 19
smoothingGroup = 4
}
23
{
materialNr = 2
normalVertexNr = 9 3 0
positionVertexNr = 16 18 19
smoothingGroup = 4
}
24
{
materialNr = 2
normalVertexNr = 4 22 1
positionVertexNr = 18 12 19
smoothingGroup = 1
}
25
{
materialNr = 2
normalVertexNr = 22 19 1
positionVertexNr = 12 13 19
smoothingGroup = 1
}
26
{
materialNr = 2
normalVertexNr = 13 7 20
positionVertexNr = 15 17 13
smoothingGroup = 2
}
27
{
materialNr = 2
normalVertexNr = 20 7 2
positionVertexNr = 13 17 19
smoothingGroup = 2
}
28
{
materialNr = 2
normalVertexNr = 16 23 10
positionVertexNr = 14 12 16
smoothingGroup = 2
}
29
{
materialNr = 2
normalVertexNr = 5 10 23
positionVertexNr = 18 16 12
smoothingGroup = 2
}
30
{
materialNr = 2
normalVertexNr = 11 8 17
positionVertexNr = 16 17 14
smoothingGroup = 1
}
31
{
materialNr = 2
normalVertexNr = 8 14 17
positionVertexNr = 17 15 14
smoothingGroup = 1
}
}
}